Name:

Directions: Show all work and/or annotate with an AP Chem level explanation for non-math answers.

1999 NChO Exam

1. Which oxide forms a basic solution when mixed with water?

(A) K_2O	$(C) CO_2$
(B) Al_2O_3	(D) SO ₃

- 35. Which 0.1 M solution has the highest pH?
 - (A) sodium carbonate
 - (B) sodium chloride
 - (C) ammonium carbonate
 - (D) ammonium chloride
- **36.** Which is the strongest acid?
 - (A) acetic acid $(K_a = 1.8 \times 10^{-5})$
 - (B) benzoic acid $(K_a = 6.3 \times 10^{-5})$
 - (C) formic acid $(K_a = 1.8 \times 10^{-4})$
 - (D) nitrous acid $(K_a = 6.0 \times 10^{-4})$
- **37.** What is the order of concentration of the ions and molecules in a nitrous acid solution? Nitrous acid, HNO₂, is a weak acid.
 - (A) $H_3O^+ = NO_2^- > HNO_2 > OH^-$
 - (B) $H_3O^+ = NO_2^- = HNO_2 = OH^-$
 - (C) $HNO_2 > H_3O^+ = NO_2^- > OH^-$
 - (D) $HNO_2 > NO_2^- > H_3O^+ > OH^-$

1998 NChO Exam

- **33.** A water solution of sodium carbonate, Na₂CO₃, has a pH greater than 7 because
 - (A) it contains more carbonate ions than water molecules.
 - (B) it contains more sodium ions than carbonate ions.
 - (C) sodium ions react with water.
 - (D) carbonate ions react with water.
- **34.** Which species dissociates most completelyin water solution?

(A) NH_4^+	(C) HNO ₃
(B) H_2CO_3	(D) HSO ₄ -

- **37.** According to Brønsted -Lowry Theory, which of these species cannot be amphoteric?
 - (A) $NH_4^+(aq)$ (C) $NH_2^{1-}(aq)$ (B) $NH_3(aq)$ (D) $NH^{2-}(aq)$

1997 NChO Exam

Period:

- 34. Which acid reacts with NaOH to form sodium hypochlorite (the ingredient inhousehold bleach)?
 (A) HOCl
 (B) HOClO
 (D) HOClO3
- **35.** Which of these acids is the strongest inaqueous solution?
 - (A) H₃PO₄
 (B) H₂SO₃
 (C) HClO₃
 (D) HOCl
- **37.** Normal rain water has a pH of 5.6. This is best explained by the presence of
 - (A) nitrogen oxides.
 - (B) carbon dioxide.
 - (C) sulfur oxides.
 - (D) particulates.
- **38.** In a 0.050 M solution of a weak monoprotic acid, $[H^+]=1.8 \times 10^{-3}$. What is its K_a?

(A) 3.6 x 10 ⁻²	(C) 6.7×10^{-3}
(B) 9.0 x 10 ⁻⁵	(D) 1.6 x 10 ⁻⁷

1996 NChO Exam

- **34.** According to the Brønsted-Lowry definition, a base is a substance that
 - (A) increases the hydroxide ion concentration in water.
 - (B) can react with water to form OH^{-} ions.
 - (C) can donate an electron pair to form acovalent bond.
 - (D) can accept a proton from an acid.

Seat#:

Dougherty Valley HS Chemistry - AP Acid Base – NChO Practice

35. What is the pH of a 0.02 M solution of KOH?

(A) 12.3	(C) 2.0
(B) 12.0	(D) 1.7

- 36. Which couple is not a conjugate acid-basepair?
 - (A) HCO_3^- and CO_3^{2-}
 - (B) H_3O^+ and H_2O
 - (C) $H_2PO_4^-$ and $PO4^{3-}$
 - (D) NH_3 and NH_2^-
- **37.** These acids are listed in order of decreasing acid strength in water. HI > HNO₂ > CH₃COOH > HCN According to the Brønsted-Lowry theory,which anion is the weakest base?

(A) I ⁻	(C) CH ₃ COO	
(B) NO_2^-	(D) CN ⁻	

38. What is the $[H^+]$ in a 0.40 M solution of HOCl?

	Substance	Equilibrium Constant, K _a	
	HOCl	3.5 x 10 ⁻⁸	
(Å	x) 1.4 x 10 ⁻⁸	3 M (C) 1.9 x 10 ⁻⁴ M(E)	3)
1.	2 x 10 ⁻⁴ M	(D) 3.7 x 10 ⁻⁴ M	

39. Which of these salts will give a basic solution when added to water?

(A) NH ₄ NO ₃	(C) $Ca(NO_3)_2$
(B) $NH_4C_2H_3O_2$	(D) $Ca(C_2H_3O_2)_2$

1995 NChO Exam

- 2. When sodium oxide, Na₂O, is added to water, the major products expected are
 (A) Na⁺ and OH⁻ ions
 (B) Na⁺ ions and H₂O
 - (C) Na⁺ and O^{2-} ions
 - (C) Na⁺ and O^2 10ns
 - (D) Na^+ and OH^- ions, and O_2 gas

36. At 0 °C the ion product constant of water, K_w , = 1.2 x 10⁻¹⁵ The pH of pure water at this temperature is

e pri or pure water	at this temperature
(A) 6.88	(C) 7.46
(B) 7.00	(D) 7.56

- **37.** What is the [H⁺] in a 0.010 M solution of HCN? The equilibrium constant, K_a , forHCN equals 6.2 x 10⁻¹⁰ (A) 3.6 x 10⁻³ M (C) 1.0 x 10⁻⁷ M (B) 2.5 x 10⁻⁶ M (D) 6.2 x 10⁻¹⁰ M
- **38.** HCN (aq) + HCO₃⁻ (aq) \leftrightarrow CN⁻ (aq) + H₂CO₃ (aq) If the value of the equilibrium constant, K, is less than 1, what is the strongest base in this system?

(A) HCN	(C) CN ⁻
(B) HCO_3^-	(D) H_2CO_3

40. The conjugate acid of the bicarbonate ion, HCO_3^- , in H₂O is

(A) $H_{3}O^{+}$	$(C) OH^{-}$
(B) CO_3^{2-}	(D) H_2CO_3

- **41.** The sodium salt, NaA, of a weak acid is dissolved in water and no other substance isadded. Which of the following statements iscorrected?
 - (A) $[H^+] = [A^-]$ (C) $[A^-] = [OH^-]$ (B) $[H^+] = [OH^-]$ (D) $[HA] = [OH^-]$
- **42.** Which of these ions is predicted to produce the most acidic solution when dissolved in H₂O?

(A) K ⁺	(C) Co^{2+}
(B) Ba ²⁺	(D) Fe ³⁺

43. When 0.10 M solutions of solutes; HClO₄, NH₄Br, KOH, KCN, are arranged in order in increasing [H⁺], the correct order is:

(A) KOH < KCN < NH₄Br < HClO₄

- (B) KCN < KOH < HClO₄ < NH₄Br
- (C) $HClO_4 < NH_4Br < KCN < KOH$
- (D) $NH_4Br < HClO_4 < KOH < KCN$

A (64				
45) D				
41) D	36) D			
40) D	38) B			
38) C	A (78	38) C		37) C
37) B	39) C	97) B	A (78	39) D
3(9E	A (25	32) C	34) C	A (25
A (2	34) D	A (45	33) D	A (I
\$66I	966I	<i>L661</i>	866I	666I
				SIGWSHA